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Abstract

In the application of representation theory to physical and crystallographic problems, Kovalev’s
tables provide a uniquely reliable and complete source for the required irreducible
representations of the space groups. A number of programs based on these tables, designed to
automate the lengthy calculations involved, generate non-physical or incorrect solutions to
some problems, raising questions over the validity of Kovalev’s work. In this work the tables
are verified to the point of homomorphism with the groups and subgroups that they represent
through the use of the digitized versions of the tables used in SARAA. The results support the
correctness of Kovalev’s definitions, highlighting difficulties in interpreting the tables
themselves and some general failings of the programs used in the application of representation

theory to physical problems.

1. Introduction

Symmetry is integral to our theoretical and experimental
understanding of molecular and solid state properties. In
spectroscopy and crystallography, it allows us to derive
selection and coupling rules that characterize structures, and
to understand systematic absences in diffraction patterns
or optical spectra. Symmetry adapted functions provide
the basis for descriptions of electronic bonding, vibrations,
magnetic ordering and related physical properties, as well
as drastically simplifying calculations in fields as diverse as
density functional theory [1] and x-ray diffraction [2].

The symmetry of simple R® Euclidean spaces under
affine transformations is well developed, and its application to
crystallography comprehensively covered in the International
Tables for Crystallography—A (IT-A) [3]. More general
symmetries in terms of vector spaces are used to describe
physical properties such as lattice vibrations, distortions, and
magnetic structures, and could be applied to problems in
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incommensurate crystallography. The symmetry of these
spaces is best described using representation theory, in which
the subgroup symmetries of the space group are projected
onto symmetry adapted basis vectors (BVs); in vibrational
spectroscopy these are termed the fundamental modes.
This area has been extensively explored by Bertaut [4-6],
Wigner [7], and Russian authors such as Kovalev [8], and
Izyumov [9], but representation theory, and the more complete
co-representation theory, has not been as widely or readily
accepted.  This is largely due to the fact that, unlike
crystallographic space groups (SGs), the number of possible
vector fields is infinite and therefore some calculation must
always be involved in their use. Further, there are as yet
no agreed conventions on the definition of crystal settings,
the irreducible representations (IRs), or the labels of the IRs
that form the basis of representation theory. The tables
provided by Kovalev contain all the prerequisite information
for the application of representation theory to crystallographic
problems; this is the most comprehensive work on the subject.

A number of programs (SARAA [10], MODY [11],
Isotropy [12]) have been developed to automate the
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use of Kovalev’s tables and the calculations involved in
applying representation theory to physical systems; they
have precipitated an increase in the use of representation
theory, specifically for work on phonons [13] and magnetic
orderings [14]. However, for all of these programs, difficulties
have arisen in their application; particularly in the low
symmetry triclinic and monoclinic lattices or when the
definition of Kovalev’s space group differs from that used
in the IT-A. These have fuelled a general controversy over
the validity of the different alternative sources of irreducible
representations and confusion over the translational parts of
the symmetry that are appropriate for Kovalev’s space groups
as these were not defined in the first version of his tables.
The tables in the English translation of the second edition of
Kovalev’s book were validated by its editors and over 500
mistakes in the Russian version corrected. However, the
details of the validation are unclear [15], therefore it was
decided to validate independently the tables fully in order to
clarify the problems encountered in some calculations and
when differences appear between irreducible representations
provided by different sources. This process is important for
the use of Kovalev’s irreducible representations, as without
confidence in the contents any results derived from calculations
based upon it are of indeterminable value.

We will briefly cover the relevant group theory before
describing, in section 3, which properties of Kovalev’s tables
were validated and how this was done.

2. Space groups and representation theory

In crystallography the starting symmetry of interest is the
space group of the crystal, G, whose elements are affine
transformations of the R* Euclidean space which leave the
crystal unchanged: rotations and roto-inversions, combined
with translations. In the following discussion, we use
Kovalev’s notation g; = (@;|h;) for an operator g; € G, where
h; is the rotation/roto-inversion and ¢; is the translation (this
notation follows the mathematical convention that operations
should be applied from right to left).

When considering a vector space, e.g. a magnetic struc-
ture, phonon or crystallographic distortion, with translational
properties defied by the propagation vector k, the space group
symmetry is reduced to those symmetry elements in G that
leave k invariant within a reciprocal lattice vector b:

kg=k+b Vg € G;. (1)
For clarity we have explicitly stated that this operation is of
the complete rotation—translation operation g € Gy in order to
emphasize the use of the little group Gj. However, it should
be remembered that only the rotational part of a symmetry
operation, h, has any effect on a reciprocal space vector, as
real space translations « leave it invariant. Consequentially, the
subgroup of point symmetry operations that leave k invariant is
also the point group Hj.

2.1. Composition of SIRs and LIRs

Rather than the small IRs (SIRs), 7;, of the group G, for
succinctness Kovalev’s tables list the loaded IRs (LIRs), 7;, of
each group H;. For a given symmetry operation g; in G these
are related according to:

T =1 e 2k (2)

where @; is the translational part of the symmetry operation
gi = (|hy).

The irreducible representations (IRs) of G, and the
Small IRs (SIRs) of the subgroups G; must have the same
structure as the space group that they are a homomorphic
map of; in particular they must obey the law of composition.
For symmetry operations, this is simply that the successive
application of each transformation as:

(@;lhi) o (ajlh;) = (a; + hi o ajlhih;). (3)

If 7; is a representation of the operation (a;|h;) then by
homomorphism:
T X Tj = Tjoj- (4)

Here the x symbol indicates matrix multiplication. For the
small irreducible representations the law of composition then
becomes:
fi .efzmk-a,- % 'Ej .efzmku_,- _ %ioj .efzmk-(cr,-+h,-><a_,-)
fi x fj — fioj . 672n1k~(a,+h,><crj) 3 eka-a,- . eka-aj

(&)

— fioj . e—2711k~(oz,»—a,»—ai+h,»><aj)

=t . 2mik-@;—hixd;))

The exponent in the last line of equation (5) is the ‘load’,
W. It is the last relationship we have used to validate Kovalev’s
tables.

3. Method

The method of validation follows from the relationship derived
in equation (5); two separate methods of generating the ‘load’
were compared to determine any inconsistencies between
the tables and the law of composition. Calculations were
performed for each of the distinct points, lines and planes of
the Brillouin zone that define the k-types used by Kovalev. For
the lines and planes, several arbitrary values of any variables in
the k-vector were used.

e The operators of the SG were combined pairwise to
generate a product operator; then the LIRs were from
Kovalev’s tables for those two operators were multiplied
together to generate a product matrix, M. M was then
expressed as the LIR matrix for the product operator
multiplied by a coefficient: the load.

fi X fj =M= Wfproduet« (6)
e The load is calculated according to equation (5).

W = ezmié.(&‘,-fh,- x;) )



J. Phys.: Condens. Matter 20 (2008) 104232

Z L Davies and A S Wills

An example of the calculations performed is given in
equation (8). In this example the SG is P2,2,2;, the
operators are g, and g4 (following Kovalev’s notation) and
k26 : (%7 %7 %)

g (3, 3. 0lx, =y, —2)

g4 (5.0, —x,—y,2)

. i 0\ /0 i . 0 1
72”4:(0 —i><i o) T2°4:<—1 0)
0 —1
_(1 0) (8)
0 1
:_1(_1 0)

Q2mik-(@—hax@s) _ o27i(5.3.5)((3.0.9)~(5.0.-5)

2°2°2

Most of the input files were taken from SARAA. All the
inherited files underwent corrections, for both the K and /
settings, and these corrections have been incorporated into a
new release of SARAR.

4. Results

For the finalized program and input files, there were no
inconsistencies found within the tables of Kovalev, provided
his definitions of the axis systems and symmetry operators
were used.

5. Discussion

In validating the Kovalev’s collected set of irreducible
representations of the space groups, to resolve problems in
previous calculations and doubts over their accuracy, we have
found that without exception errors arise from the applications
performing the calculations and misunderstanding of the
precise definitions that he used. Our work indicates that the
tables are entirely consistent within those definitions, however,
most users prefer to work within the definitions of the space
groups laid out by the IT-A. Great care must be taken to ensure
that the transformation between the IT-A space groups and that
used by Kovalev’s must retain the homomorphism on which
representation theory is based.

The fundamental obstacle to correctly moving between the
various axis systems is a lack of clarity in Kovalev’s tables as
to which information is given in which setting. This thorough
review of his work leads to the following conclusions:

e Kovalev’s fundamental periods define his primitive lattice,
and are listed in the Kovalev defined cubic/hexagonal axis
system.

e The operators of the triclinic and monoclinic SGs have
their translational parts defined in the Kovalev primitive
axis systems that differs from that used to define the
rotational parts of the symmetry operators. They are

tabulated as linear combinations of the fundamental
reciprocal periods to indicate this. Operators for all other
SGs are in the cubic/hexagonal axis system.

e Where the Kovalev centred setting differs from the
IT setting, Kovalev list transformations between them.
However, Kovalev always refers to settings defined in
the International Tables for X-Ray Crystallography (IT-X)
[16] which was the accepted reference when Kovalev first
calculated his tables.

e Due to the International Union of Crystallography
redefining some space groups between IT-X and IT-A,
many of the current software programs contain associated
errors, particularly in the transformation of coordinates,
symmetry operations, and k-vectors. An additional
transformation from the IT-A setting to the IT-X setting
is required before the transformations listed in Kovalev’s
work can be performed to bring the problem into his
defined primitive settings.

e The tables of Kovalev are intolerant to redefinitions
of the axes or the operators that do not preserve the
homomorphism.

6. Conclusions

This work reinforces the earlier, indeterminate validation of
Kovalev’s tables; the loaded irreducible representations and
small irreducible representations tabulated are homomorphic
to the point and space groups they represent. The latter are
therefore consistent with the translations elements defined for
each space group operator in the second version of the tables.
Questions concerning the accuracy of the representations
arise from ambiguity regarding the axis system that various
information is presented in, and from the difference in space
group definitions that has arisen between the International
Tables for X-ray Crystallography and the current version of the
International Tables for Crystallography-A.
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